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1. INTRODUCTION

The objective of this study program has been to

study methods of detection of coherent or partially

coherent optical radiation in a noncoherent backaround.

This study is primarily intended for application at
low light levels and low ratios of coherent to non-
coherent (i.e., signal/noise) light. This study has
application for identifying/locating a source of
partially coherent light (e.g., laser) in daylight or
in the presence of thermal background radiation.
Essentially this measurement method is based upon

measurements of temporal coherence of received light.
The background light is almost totally noncoherent.
Laser radiation is partially coherent, and can, in

certain cases approach total coherence.
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. C RN ORISR SR SR SRR LYW CASIT S L UORUCN IO SUURPLITIC IR SN - E

2. REVIEW OF METHODS FOR MEASURING

52

TEMPORAL COHERENCE

One of the classical methods of measuring temporal
coherence is based upon a form of interferometry. In
such methods the beam of light whose coherence is to
be measured is separated into two beams. One of the
beams is time delayed relative to the other (e. g., by

introducing a path length dlfference), and then the beams

are recombined in such a way as to form visible interference =

frlnges. The lnterference fringe contrast ratio is a

function of the temporal coherence which is being sought.

This interferometric measurement could, in principle,

be used as a method of detecting laser radiation. However,
it tends to be usefq} for detecting a temporally coherent
source only at large signal levels and large signal/noise
compared to the intent of our investigation. Thus our
study will be devéﬁed %;re to techniques of measuring
temporal coherence which operate at the lowest possible
levels.

There are Several methods for measuring temporal
coherence which are applicable to low signal levels.
Each of these involves measurements of statistical
parameters of the photon arrival rate. The signal

detection method which we have studied in our investigation

uses photon arrival rate statistics to estimate various

B s e e T . i it




moments of the statistical distribution function for the

; . photon arrival rate. We will demonstrate shortly that

. these are distinctly different for coherent and noncoherent
radiation.

In a later section of this report we describe
instrumentation and procedures for estimating the moments
of the photon arrival rate distribution function from
; finite numbers of observations. From these we describe

a signal processing method which leads to a definition

it i

of a signal-to-noise ratio from which the signal detecta-
] bility can be assessed. We further determine the size of
the sample space required for acceptable confidence in

the detection of the coherent radiation.




3. BRIEF TUTORIAL REVIEW OF

TEMPORAL COHERENCE

The temporal coherence of an optical field is
a measure of its ability to produce stable time
independent interference fringes. The temporal coherence
can equally well be represented in the time or frequency
domain using classical statistical concepts.

In classical statistics the temporal coherence of
a scalar stationary random process V(t) is given by
the autocorrelation function RV(T) or the power spectral
density W, (w)

T

R (1) = Lim% . V(t) V(t + T)dt
T+

W, (w) =f°° R, (1) e 10T go
-
In the semi-classical approximation (i.e., ignoring
quantum effects) these same functions are useful for
representing the temporal coherence of any Cartesian
component of an optical electric or magnetic field.
A linearly polarized optical field is conveniently

represented by the complex amplitude U which is

related to the intensity I by:




e

This scalar amplitude is proportional to the electric

field peak amplitude E

= s B
vV2n
0
where
E = ||E]]
E = vector electric field
ng = wave impedance

In the above both U and E are complex analytic functions
which are derived from the corresponding real electric fields.

The coherence of an optical field is represented

by the mutual coherence function F(?l, ?2, 1) where:

=, = _ —_ -/’ I =
F(r1, r,, T) = gig T Jo U (rl,t) U(rz, t + t)dt
2

where

il
]

vector positions
1,2

T

time difference
It is convenient to denote P(Fl, ?2, 1) by the symbol
Plz(r). In this entire discussion we are assuming
that U 1is ergodic.

From this definition of the mutual coherence function
the corresponding frequency domain function G(Fl, ?2, V)

can be found:

xn
-~

G(rl, T, v) = _/ ‘(rlrzr)e - i

-

= R 4 2 L




This function is called the mutual spectral density or
sometimes the cross spectral density.

In most calculations it is helpful to use normalized
functions. The normalized mutual coherence function is
called the degree of coherence and is denoted

Y(rlrzr) = le(r)

P(rlrzr)

Yqi4(T)
12 {r(z,

e = = 11/2
r10) Fr2r20}
Note that ylz(r) is bounded:

Iy <1

The corresponding normalized spectral density glz(v)

is given by

<o

- -i2nvt
g, (V) = ./zw T 5 (T)e” dt

G12(V)

G,.(v)dv
T e

There is an important special case when considering

light from a laser. Laser generated light occupies a

very narrow spectral width Av. 1In this case the

normalized spectral density can be approximated by:




g(v) =

where

g

7
<v> = %2 < v < <v> o+ %2
<v> = average frequency
Av = linewidth
Av
VS <<

In this case the normalized degree of coherence is given

by

where

le(O)

and where

ds

SRR

(t) =

SO LUU PPV —— - ——

source intensity

intensity at vector position ?1
" " ” " T

distance from differential source

position dt to points 1,2
respectively

differential element of area at

light source




£ = entire source area which is .

radiating light s

This particularly important special case is known
as the Van-Cittert - Zernike theorem. It has the importance

of separating the spatial coherence (0) and the

‘ [
temporal coherence which is given by Yll(r). In the
remainder of our work we will make the simplifying

assumption that the light whose temporal coherence we

are attempting to measure occupies a very narrow spectrum
Av compared to the average frequency <v>. Thus in

this study we are attempting to measure Yll(r) by

various methods rather than attempting to find Y15 (2) . &

_The method yhich we have been studying for the

measurement of yll(r) is based upon measurements of <
4

the statistics of photon arrival rates. This study

has been motivated by the work in Ref. 4 which showed

the relationship between {t) and photon statistical

il
measurements. There it is shown that for light having

Gaussian amplitude statics we have:

pe() = n<xe) > [1+ vy @)?)

where

P.(T) = probability of receiving a

photon at time ¢t + Tt given

a photon at time ¢t

kv s S it




9
<I(t)> = average light intensity
n = detector efficiency
<n> = average numker of photons

generated/unit time by <I(t)>

This formulation is not strictly applicable to the
detection of laser light because the latter does not
have Gaussian amplitude statistics. However it is shown
(Ref. 4) that noncoﬂerently>generated photons have a
tendency to bunch together having a nonuniform arrival
rate; whereas perfectly coherent constant amplitude light
has a uniform arrival rate. This result suggests that
the_arr%yé{‘rgtg‘§;iyi§§@35“afsmdi£fergnt for coherently
generated photons that for noncoherently generated photons.
A significant portion of the research conducted during
this study program has been devoted to a careful investi-
gation of the statistics of photon arrival rates.

Section 5 of this report describes the results of
our theoretical study of photon arrival rate statistics.
There it is shown that certain of the statistical
moments for the photon arrival rate are sufficiently
different for coherent and noncoherent light to provide
the basis of detection of the former when concealed by
the latter. 1In Section 6 we define a signal gquantum
from which it is pdssible to detect coherent light in a

noncoherent background.
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4. INSTRUMENTATION FOR OPTICAL SIGNAL

DETECTION MLTHOD

The method which we are studying for detection

of coherent radiation can be understood with reference

to Fig. 1.
t I(t) i i ..
nc( ) . gy Electronic *sm Digital
—adOptics Detector === p f———e4 Signal
Switch
Processor
Statistical
Parameters

Figure 1

This figure is a block diagram of a portion of the
optical signal detection instrumentation. This
instrument, which is presumed to be receiving light from
some region of spaces receives light having intensity
Iinc from that space. This region of space is that
portic., contained inside a solid angle which is deter-
mined by the instrument optics.

The optics include a lens system which might,
for example, be a telescope and possibly some sort of
preselector or filter such as a Fabry Perot etalon.
The parameters of these optical components are a function
of the intended application of the system. For example,

in attempting to detect the radiation from a particular

type of laser at one of its known wavelengths, it would

10
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be reasonable to remove the light outside of the
inhomogeneously broadened linewidth for that particular
laser and wavelength by means of an optical filter.
Referring to the previous section we assumed
that the spectral width of the optical source Av is
small compared to the mean frequency <v>. The preselector
filter which we mentioned above is a means of achieving ‘
this narrow spectral profile.

Other factors which influence the specification of the

o p——

parameters of the system optics are: the desired region

|

of coverage, the total number of wavelengths which must be
covered and the corresponding linewidths/bandwidths. 1In
this study we presume that the incident light is filtered
about a center frequehcy- Vo 'where v, is the

average optical frequency over the filter passband

(iisery; g <v>).

The light which emerges from the system optics
reaches the active area of_a photo detector. 1In our
study we are considering low light levels and low
signal/noise. A detector of great sensitivity will be
required for this purpose which in limiting cases
should be capable of detecting individual photons.

That is, the detector output signal must rise above the

quiescent noise level in the presence of a single photon.

Moreover we will be concerned with rapid variations

in the intensity of the light. The detector should be

capable of responding to variations in light intensity

S - R SRR S—
e = T ST AR Py — -




which occur in intervals on the order of nanoseconds.
This implies a detector having a bandwidth of the
order of a few GHz. The combination of large effective

detector bandwidth and sensitivity suggests that the

detector will probably have to be a cooled photo multiplier.

However, it is not the purpose of this investi-
gation to develop a design for an instrument. Therefore
we will not pursue the characteristics of the detector
further than to say that it must be capable of detecting

very small numbers of photons and must have a bandwidth

in excess of about 109 Hz.

In the remainder of this report it will be assumed
that the detector is a photo multiplier having a
multiplication factor Mpm‘ That is the ratio of anode
current id to cathode current ic(t) is given by:

The cathode current is determined by the number of
incident photons, by the quantum efficiency of the
cathode and by the optical frequency. Assuming that the
average energy per photon in the filtered light reaching
the cathode (i.e., hva) is sufficient to overcome the
cathode work function, then some nonzero fraction of
the incident photons will generate free electrons at
the cathode. Denoting the number of incident photons/
unit time which strike the cathode Np and the number

of liberated electrons/unit time Ne’ then

T ST




where 7 1s the cathode quantum efficiency. It is
convenient to call Np the photon flux rate.
This photon flux rate is linearlyv proportional

to intensity I(t):

o S
N = I ds
P hva Ad

where Ad is the active area of the detector which
received intensity I. In writing this expression we
assume normal incidence upon a planar cathode. For
our analysis we make the simplifying assumption that

I is uniform over Ad for which we obtain:

Ia
hva

a

N =
P

The cathode current is ic given by

In writing these expressions we have ignored the
transit time of electrons. Ignoring these effects is
equivalent to assuming that the detector has infinite
detection bandwidth. We will make this assumption

throughout this report.
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Our signal detection method is based upon the
statistics of the photon flux rate. 1In collecting data
for the required statistical calculations it 1s necessary
to sample the detector output current. This is
accomplished by means of a very fast electronic switch.
Denoting the switched output current i m(t) for

’

the mth sample we can write

= < +
i (t) iy (&) tp Sttt +T
= 0 t, tT St <t
t, = mr
m = l, 2' o0 0 M

~
L]

sampling period

T = sampling interval
T > T
M = number of samples taken

It will be shown presently that there is a
difference in the statistics of total number photo-
electrons which are generated in an interval T for
coherent and noncoherent light. We define, therefore,

the integrated sampled photon arrival rate no

t _+T
m
n = Jf N (t) dt
e

m
tm

i i

e ) e
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[
v
ct
o
ct
"

"

+
1 ' 1T 3
f qM sm 1
pm ;
m

We can relate no to the intensitvy I(t) by

using the relationships presented above:

T P ——
P A S

CAd tm+T {
nm = H\)—f I(t) dt i
-
m p
t_+T ;
" :
= f I(t) dt |
= tm .
3
where 5
= i
hva

The instrumentation depicted in Fig. 1 is assumed
to include a digital processor. This processor will
collect data (nm) from M samples and compute
various statistical parameters on this sample space

as indicated below.
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5. THEORY OF OPTICAL SIGNAL DETECTION METHOD

For an understanding of the present optical
detection method it is helpful to examine the relation-
ship between the statistical distribution function for
the photon arri§al rate and the optical intensity I(t).
For our study we need the probability p(n, T) (i.e.,
ergodic statistics) of emitting n photo electrons in
time interval from t to t + T where T is fixed.

It is shown in Ref. 1 that for perfectly coherent light

of intensity I(t) we have:

. v, A" T,
p(n,T,t) = aTin J[ I(t )at exp |-n J[ I(t )dt
i 12 t

Note that this reduces to the Poisson distribution if

the mean number of emitted photo electrons is denoted

<n>:
p(n,T) = I (™ e
where <n> = nW
t+T ' '
W = f I(t )at
t
o
n = Ry

¢ = quantum efficiency of detector

16
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<y> = average optical frequency
h = Planks constant
[}
Fcr noncoherant light I{t ) is a stochastic

process and the photon counting distribution must

be averaged over all possible I(t).

p(n, T) %T < (nw) exp (-nW)>

r'];—'j (W) ® exp (-nW) P (W) aw
0

We can illustrate the use of this relationship by
finding p(n, T) for an ideal amplitude stabilized laser.
In such a case the probability density function p(I) for

the intensity is given by:

p(I) SR ST

where

<I>

average intensity

and where 6(:) is the Dirac delta function. The

integrated intensity W 1is given by

W = 1T

The photo detection equation becomes:

-<nNW>

p(n, T) %T <>t e

—rvren
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<n>®  -<n>
e

n!
where <n> =n<IT> =N<I>T is the average number of
photo electrons generating in an interval of duration
T. Note that this is the Poisson distribution.

Another important special case merits attention.

We consider the photon counting distribution for a

thermal source. An optical field, which is generated
by a thermal source composed of many independent atomic
;adiators, consists of many different frequency components
occupying a fixed band. From the central limit theorem
it can be concluded that the resulting optical field
corresponds to a zero mean Gaussian random process in
scalar amplitude.

Assuming a linearly polarized thermally generated

optical field then the complex scalar amplitude can be

denoted U where:

and where

The joint probability density function for these

components are given by:

1
p(U,. , U;) = —— exp - £t

T—




where 02 is the variance in the intensity 1I:

luy?

-~

(]
I

e var (|u[?) =

We can write this joint density function in

polar form where

u = |ulet?
_ 2 2
[u] = U_ +U
Yy
tan ¢ = —
Ur
Letting |U[ = vI we obtain

5 2
P(/I, ¢) = 5 exp ‘((@ )
2no 20
(/D2
e VI <1>

This probability density function is independent of
the phase ¢ of the scalar amplitude. Thus we can
integrate the joint density function over ¢ to obtain
the probability density function for the intensity

alone:

2n
p(/I) = ./’ p(vI, ¢)do
0

~

[\
A
]
A
[
v

"
1t

A
-
A\
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This function can be further converted from a function

of VI to a function of I by noting

dI = 2 /I 4 /I

Thus we obtain

p(I) = Fse

In our instrumentation we will be using very fast
detectors whose outputs will be sampled for very short
intervals compared to the time in which I(t) changes
appreciably. In this case letting T be the sampling
interval we can approximate the integral for W as

follows

t+7T 0 0

W= /; I(t) dt

g IT

From this we obtain for p(n, T):

- <] - I
. n <I>
T
p(n, T) = Jg iﬂi!) exp (=-nIT) E;T;—~ daI
<n>"
= _——r—
1l + <n> =

where <n> = N<I>T is equal to the average number of

e SRS N O sonine S SV CRE T SRS GO I




photo electrons generated in the interval T by the
thermally produced intensity 1I.

Observe that pi(n, T) is different for the two
special cases which we have considered. Moreover the
functions p(n, T) for a practical case is also
differen; from that for thermally generated light.

It is the difference in p(n, T) which serves as the

basis for our method of detecting laser radiation.

To enhance this notion it is instructive to consider
the mean and variance for these two distributions. If
we imagine that the light which is incident upon our
detection apparatus is totally coherent then we can
denote the optical intensity IL(t) and the number of
photo electrons generated in the sampling interval T.
We further presume that this light is generated in a
perfect amplitude stabilized laser such that the

Poisson arrival rate statistics apply. Denoting the

mean photon arrival rate <n_> the variance is given

by

V(ng) = I

This result is a well known property of the Poisson

process.

i g T s o
S s i 5 i 4
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On the other hand, assuming that the incident light

is totally noncoherent we denote the intensity Ii and

the numbers ns of photo electrons generated in interval T.
Denoting the average of this number of photo-electron

<ni> we obtain for the variance:

2 ny
n. - <n.>> <in.>>
( i i ) n;

1+n.

[}
nog

V(ni)
i (1 + <ni>)

<n.> + <n.>
n, (1 n, )

Note that if we take the ratio of variance to mean
for the two cases we havg the basis for discrimination
betﬁeeh‘;oherent and noﬁcéheregt radiatién. We denote
this ratio S, and S, for coherent and noncoherent

respectively and obtain:

V(nc)
S = -1 = 0
c <ni>
Vin,)
Sl = <ni> = 1 4+ <n.> - 1 = <n.>

These functions are sketched in Fig. 2. By measuring
the mean and variance of the detected photo electrons
we can, in principle, distinguish perfectly coherent

from perfectly noncoherent light. Note that it is

advantageous to pick T 1large enough such that




6. FORMULATION OF SIGNAL DETECTION PROBLEM

In the previous section of this report it has been
shown that the statistics of the photon arrival rate
are a function of temporal coherence. This influence
of coherence is expressed by the probability density 5
function for the number of photons n counted by a ’

photo detector:

~-m
- . < .
(n) = L iy o AU i 1+ Ty exp |- -—SSiﬂ X i
P (n +m - 1)! <n,> m P <n;>>m 11
ll
4
g 14
Lm-l ) <nc>m r
n <n;>(<n;> + m) ]
4
where ]
m=1 ]
Ln () = the Laguerre polynomial

m = number of modes in the
optical field

<ni> = average number of noncoherent
photons counted in an inter-
val T

<nc> = average number of coherent

photons counted in T

The number of modes m of the optical field is deter-
mined by the receiver optics. It is shown in Ref. 1 that

this number of modes is given by:

m o= S5T
RN T

25
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where

= detector area

Sl = source area

R = distance from sound to detector

A = optical wavelength

T = sampling interval in which
photon rate is

T = coherence time of source

In the proposed instrumentation, the detector output will
be sampled for a time T. The number of photons in the
mth sampling interval of duration T 1is denoted n .
If this sampling is taken near the nyquist limit, then T
will be of the order of the reciprocal of the detector
bandwidth Bd:
R
d
A typical value for T is in the range from 10~ ° to 10”2,
In most applications the wavelength of the laser
being sought is known. In this case it is reasonable to
utilize an optical preselector to filter the light reaching
the detector. A Fabry Perot etalon is an example of such
a preselector.
Normally it is desirable to have the preselector band-
width as narrow as possible for maximum pre-signal proces-

sing signal/noise. A Fabry Perot etalon is commercially
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o
available having a bandwidth A)X of about 1lA. The light

emerging from a filter of this bandwidth will have a

"coherence time" <t of the order of
!
2 [
T = o

Ak

o
where C equals speed of light and A wavelength. A 1A

filter resonant at 1 um will yield a coherence time of

about 10-10 sec. J

It is instructive to estimate the number of modes f
in a filtered optical field for a typical set of optics

that could be used for detecting coherent light in a

noncoherent background. The following "reasonable" values

are taken for the parameters in the expression for m:

s~ 1 cm2
st ~ 1 m?

1 Km

s
14

A~ 1 um

For this representative example the number of modes is

given by
m = 100

In general the number of modes in an optical field appropriate

for the proposed signal detection scheme will be in the

range 100 < m < 104. However, at times, single mode fields

O e 15,3550 b A At W o i bt Ao i s i e
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will be considered in the following analysis for simplicity

in interpreting certain results.

The objective of this investigation has been to find

P

e

means of detecting coherent photons in the presence of

noncoherent photons. This is accomplished by measuring

various moments of the distribution p(n) and by knowing

the influence of nonzero <ni>

we showed that the variance of p(n) depends upon <n,>

and <n_>. In doing so we demonstrated the variance for

the two special cases:; (a) <n;>

(b) <nc> = 0 and <ni> # 0.

It is instructive to consider the variance V(n) for
the above density function in the case of combined coherent !
and noncoherent light because this is the applicable case

for the detection of coherent light in a noncoherent back-

ground.

The variance of p(n) 1is most easily computed from 4

the recurrence relation for the moments <nk>. In Appendix

A it is shown that

upon these moments. Earlier

= 0 and <nc> # 0 and

A

e ————— v
- Mafle. om0 Bt e

o s

—

S

e rpea e ey

<n. > k
<n">
<nk+l> = <nc + ni><nk> + <ni> (l + ik ) IS

m a<n.>
Al

3<nk>

2<n.>
4+ <n >(l + 4 )
o4 m

a<n. >
i

where m is the number of modes of the optical field

being investigated. The coherent and noncoherent photons

-
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are independent because they are generated by independence

physical mechanisms. As a result the first moment of p(n)

is given by

<n> = <n_ + n.> = <n_> + <n.>
c i c i

From the recurrence relation the second moment is

found to be:

<n.>
<n>
<n2>= <n>+<n.>2+<n.>l+ 1 +<n>l+2n
C 1 2k m C m

The variance [i.e., V(n)] in p(n) is given by

V(n) = <(n - <n>)2>

<n2> - <n>2

2 <ny>
= <n > + <n.> + <n.> +
( nc nl ) nl (l m )
2<n.> 2
+ <n >1{1 + -~ - {<kn > + <n.>
c m c 1

2<ni> <ni>
= < > + + <n.> +

It is convenient to define the ratio of average coherent

"

to noncoherent photons

<n >
c

<n.>
nl

Using this notation the variance V(n) becomes:

| r 2<n> 1l <n>
Vin) = <n> 1 + r[l + m(l+r)] + 1 + r[l + m(l+r)]

e

e

= P,
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Note that this variance which depends significantly
upon r can serve as the basis for detecting coherent
light. Totally noncoherent light corresponds to the
special case r = 0. Totally coherent light corresponds
to the limit as r tends to infinity. For any given
signal/noise (i.e., for any given r) the detection of
coherent light involves distinguishing between V(n,r)
and V(n,o0). It is the purpose of the following analysis

to consider the process.

6.1 Definition of Signal

In attempting to detect temporally coherent light
in a noncoherent background from the photon arrival statis-
tics, the received signal must be sampled. In the proposed
scheme, the number of photons is counted for an interval
T repeatedly. Denoting the number of photons received in
the mth sample Mm’ then an estimate of the variance G

of n can be obtained

&(n) 3 (nm - <n>)

where

<n> =

2
[ e
o}

A

i.e., <n> 1is an estimate of the mean number of photons in
an interval T and where N 1is the number of samples

taken.




S

For mathematical convenience we assume that N is
sufficiently large that the estimate of <n> is essentially

an accurate measure of <n>:

~ . A
<n> = <n> &3 gig <n>

It is inadequate to consider the variance of n for our
purposes. However the relationship between variance and
mean of n can serve as the basis for detection of coherent
light.

In Section 5 of this report we introduced a definition

of signal:

We use a similar definition here for S, which can be

written in the following form:

<n> 1 + 2r

It is important to recognize that the proposed
instrumentation scheme for detecting coherent light is
capable of only estimating S. That is denoting this
estimate é, the proposed instrumentation can perform

A

computations leading to a value for S

e - _——

ey e

e

.




The quantity denoted S, which we have called signal,

the expected value of this estimate:

~

s <S> & Lim S

N>

6.2 Post Signal Processing Noise

is

For any finite sample space (i.e., finite N) the

estimate of S will be in error by an amount denoted ¢

where € 1s a random variable.

N
the size of the error ¢ 1is the variance in S, i.e.,

e = 8§ -8

V(S) = <(S - S)3>

In principle we could expand the above expression in

terms of the variance of V and <n>. However, the compu-

2>

E 2
V) _, o vm 1
_<n>

V(n) _ V(n)]2

v

<n>
<n> i

~

A convenient measure of

tations are unwieldy and will yield results that are not

readily interpreted.

Fortunately for relatively large

i 9
|9
i
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A~

sample space (i.e., large N) the variance <n> is small

A~

compared with the variance in V: ‘

vins] = ‘—71\(1—“)- << V[\;(n)]

The validity of the above inequality can be established

— —

by numerical example. In this case the following approxi-

mation can be made:

T ——

ol

A

<n> = <n> lj

Substituting this approximation into the expression for

V(s) yields l

vis) = 25 v[vm)] g
<n>

It is shown in Ref. 3 that V[V(nﬂ is given approxi-

mately by

~ u4 = 2‘J§
o] = 402

where My and Hy are the fourth and second central

moments of p(n) respectively:

= <(n - <n>)4>

©
= &

= <{(n - <n>)2>

Mg

(n - <n>)4 p(n)

n=1
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My = i <n>)2 p(n) 4
n=1

~ —— g

PR NOE RN ¥ ()

It is possible to evaluate My
moments <nk> (k =1, 2, 3, 4) using the recurrence rela-

and u2 from the

tionship that was developed in Appendix A. 1In Appendix B

it is shown that the variance in the signal is given by: v

A 2
1 r<n> <n> 2<n> {
v(s) = 6 —22 (1+———)(1+———)
N<n>2 (1+r)2 m(l+r) m(l+r) @
r<n> 2<n> <n> <n> ?
M r(l fi m(1+r)) M (1 * m(1+r))] E
r<n> 2<n> 3<n> ( <n> ) B
|1 +r (i B m(1+r)) M TET3) kot m(l+r) ?

2 |
2<n> i
s (1 * m(l+r)) ]

3
ﬂ
In characterizing measurement errors it is common practice to 4

T

specify the standard deviation o (i.e., square root of variance): i
|

as) = /Jvs) t‘

If the proposed signal detection method were implemented with ideal
instrumentation (i.e., zero instrument noise), then the noise asso- g

ciated with this scheme results from the finite sample space from

=

which S 1is estimated. A convenient measure of this noise is o (8)

e

defined above.

: = s |
N o (s)

It is shown above that S is given by

<n> 1 + 2r

g = =h=
M (14r)?

“ il S - TP e e e i i il ant i DTt A A I S ticinsisbodbinbal R
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Figure 3 is a sketch of signal S wvs <n>. Note that

S(<n>) is a linear function of <n> having a slope i

f
l_i_3£7 for any given ratio r and number of modes m. .
M(l+r)

The essential features of our signal detection
problem can be understood with respect to Fig. 3. The
instrumentation must distinguish between a signal having

r identically zero (i.e., no coherent light) and light

having small but nonzero r. The slope of the S(<n>)
curves is a decreasing function of r having the maximum

value at r =0 (i.e., zero signal) and having zero slope

i it i e

for r+» (i.e., totally coherent optical field).

<n>

Figure 3

e S e e At R AN e %) - - s
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The signal detection problem involves a measurement
of r in order to determine nonzero r. If it weren't
for noise, the signal detection problem would be straight-
forward. A suitable signal detection instrument would
measure <n> and then S<n> for the given (and fixed)

m could be computed. From this r could be determined
by inverting the expression for S(<n>, r).

Unfortunately there is considerable noise associated
with the proposed detection scheme, which places a lower
limit upon detectable r. As mentioned above, there is
optical receiver noise, which, for convenience, is being
neglected. The fundamentally unavoidable noise associated
with the proposed signal detection method results from
the finite sample eséimate of é as explained above.

This noise explains the uncertainty in the measurement of
S thereby placing a limit on the minimum r which can

be measured.

6.3 Example Signal Detection Method

For an understanding of the limits placed upon the
minimum size of r which can be measured it is helpful
to refer to Fig. 4. This Fig. 4 is a sketch of the
probability density function for g. This function tends
to express the distinction of measurement results for
é(r) for any given true S(x). Here we have depicted

A

the conditional probability for S under the two

2 ¥
st e e i

—M‘!




PS(S) Pl(S, r) DZES, 0n)
| 7 |
S(r) St S(0) S
Figure 4

hypotheses r =0 and r > 0. The variance for these two
conditional density functions are V[S(O)] and V[S(rﬂ
respectively. Recall that we have shown these variances

to be inversely proportional to the size of the sample

space N.

6.4 Feasibility of Proposed Methods

In the following subsection of this report the
feasibil%ty of this proposed signal detection method is
considered with respect to certain practical limitations.
In considering this feasibility, it is helpful to consider
a specific example signal detection method.

In one very traditional implementation of a signal
detection scheme a simple threshold decision is reached.

The decision will be reached that signal is present whenever

it L eg

e APTR -

M

st

e AR
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r > r
= t

where r, is the threshold signal-to-noise ratio for
reaching the decision that the signal is present. Referring

to Fig. 4 this criterion for signal present is equivalent
to the condition

S(r) < St

where St = S(rr). These conditions are equivalent

because S 1is a monotonic nonincreasing function of r.

~

In the proposed implementation both <n> and S

would be obtained from N samples nm(m =1, 2,..., N).
In our above analysis it has been assumed that N 1is ﬂ

sufficiently large that <n> = <n>. With known <n>

and m (i.e., m fixed by configuration), it is possible '

to compute S(0)

.“M’ &

<n>

s(0) = —~

e oo e o

The minimum desirable detectable signal level roin
is selected, and Smin = S(rmin) is then determined.

The threshold level St will be somewhere between these 3

PP oy e — o DAL

two values of S.

Smin : St < §{0)

depending upon the choice of acceptable errors.

\

As in all such signal detection methods there are

two classes of error which can be made: (1) failure to
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detect the signal when it is present and, (2) deciding
the signal is present when there is none. The probability f

of an error of the first (i.e., Pel) is given by

.

and the probability of the second type is (i.e., Pez):

S ~ ~
_ t J
P, = j; P, (S)ds l‘
The relative size of these two error probabilities depends

upon the function pl(S) and pz(S) and upon the choice ﬁ

of St' Selection of an optimum value for St is well

covered in the general theory of signal detectability and .
is not considered here. %

Although this investigation is not a study of signal :
detection theory, we can consider a simplified and interes-

ting special case for illustrative purposes. We assume that

Py and Py have identical shapes (i.e., identical central
moments) but different mean values [i.e., S(r) # S(0)].
We further assume for mathematical convenience that it is

desirable for Pel = pe2' If this is the criterion for

errors, then St should be halfway between Smin and
S(0):
S - U Smin
t 2
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Furthermore the total probability of error Pe in our

simplified example is the following sum: '

PE T Pe1 * Pep i
- 1
s A A A A
= J tp,sas + J p, (s)ds
0 s
t

TS ——
- =5 e

For any given pair of probability density functions
Py and P, (e.g., Gaussian) there is a unique relationship

between P S and the moments of these functions. For

e

E' "t
example P, is a function of S, and o, o, (i.e.): i
]
PE = f[stl Ul(s)l 02(8)] .

where 9 and o, are the standard deviations of P

and Py respectively.

In a typical signal detection problem a positive
real value between zerc and unity is assigned to PE
representing an acceptable level of error. Having previously
determined the minimum acceptable ratio of signal toc nocise
(rmin) and St, we can determine the maximum values for
o and oy from the allowed PE. From these maximum
standard deviations we can determine the required size of the
sample space (N). The feasibility of the proposed signail

detection scheme can be assessed from this value for N.
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There are many other approaches for assessing feasi-
bility based upon other sets of constraints. For example,
the sample space size can be fixed by the sampling rate of
the receiver, by the duration of the transmitter coherent
light signal and by the computational capacity of the
signal processing unit. However, we have chosen the above
criteria for feasibility for illustrative purposes.

Understanding of this feasibility analysis is,
perhaps, enhanced by specific numerical examples. In these
examples we select a fixed foin’ @ specific optical power
level P wavelength A bandwidth Av and detector band-
width Bd. From these we compute the required sample size
N from which ; is estimated. We select Tmin = 0.1
which is equivalent to -10 dB (power ratio) signal/noise.
In the following examples the probability density functions
Py and P, will be approximated by Gaussian functions for
g > 0. This approximation is reasonable provided the
variances of Py and p, are sufficiently small or
equivalently provided N is sufficiently large. 1In our
first example the total received optical power is taken to

be 10 10

10“20 Joule (i.e., near infrared). We assume that the

watts at an average photon energy <hv> of

sampling interval is T = 10“8 sec which is equivalent to
a nyquist sampling rate of a detector having a bandwidth
of the order of 50 MHz. The average number of photons

received in time T is given by

FPRSCUPOVT L
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Pt
<nv>

<n>

= 100

In attempting to assess feasibiiity of this method with
the following special cases we will refer to "large" and
"small" value for <n>. By such terms we imply large or
small compared with <n> = 100 photons/sampling interval.
The implication of the magnitude for <n> involved in any
particular case with regard to optical power level and
bandwidth can be determined from a numerical estimate

similar to the preceding example.

6.5 Special Case - Single Mode Fields

Although it will presenély be shown that it is not
a physically realistic example, single mode (m = 1) fields
are most easily interpreted. The variance V(g) must be
determined for our analysis. For signle mode fields the
leading term in V(g) for large <n> is

2
i1 <n> <n> r 2<n>
v(S) = (} + ) + ( )l + ]
<l,1>_N,l,N<l_1>2|il+r l +r l +r 1l +r

<n>2

<n>+o N(l+r)

The standard deviation 9 and ¢, are given by

o, = Jvls] = =2

1
1 1+r &
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= Jvls] = B2

M

93

Note that for r ~ 0.1 these two standard deviations are

approximately equal, i.e.,

The criterion for determining N can be understood
with reference to Fig. 5 which is a sketch of the two

probability density functions P and Py-

PS(S)
P, (S) P, (8)
S(r) S, s(n) S
Figure 5

Recall that the total probability of error PE is given
by

s ~ ~ m ~ -~
= €
P j; p,(S)ds + j; p, (S)dS
t
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~ 2.£ p,(S5)ds !
t : t

E
mately by }

PE = 211 - erf(—o—-—

Taking the allowable P as 0.0l we obtain

4
. . X . : ' 1
For the assumed Gaussian function P is given approxi-~ R |

E
s, - str) = 480 = 2[s(0) - s(r) :
Earlier it was shown that S(r) is given by 4
S(r) = <;> 1l + 2;‘ !;
(1+r) ’ 1

For single mode fields we obtain

<n> ]_ - l_+_2_!2'-_
(1+r)
(=)
SEONT N B

But we have shown for equal errors (Pel = Pez) that

S(0) - S(r)

s(0) - s(r)

= 2(2.4) o

min

R
!~
.
[o0]
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Solving the above equation for the maximum N (rmin)

yields

The feasibility of the proposed method is influenced
by the memory capacity of the signal processing and the
duration of the transmitted signal from which the N samples
are taken. If the samples are taken in intervals T = 10-8

sec, then the minimum signal duration for 1 for all N

samples must be

r = 108 N

2.5 msec

In most practical cases a signal duration of 2.5 msec
will not be limiting. However, a required memory capacity
to store 250,000 data points is totally unrealistic. Thus
it appears that the implementation of the proposed scheme
using a computer or special purpose processor 1is not
feasible.

On the other hand, a minimum signal/noise of 0.4
requires a memory capacity of only about N =z 1000 samples
which is clearly within the capability of a small digital
processor.

Although our example feasibility study is not physically

realistic, it does demonstrate a few of the fundamental

e

T —
= WA
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compromises between system complexity and performance of
the proposed method. The sensitivity of the size of the
sample space upon the required memory capacity is clearly
demonstrated. The following numerical example further
expands the understanding of the influence of system para-

meters upon performance.

6.6 Second Special Case Feasibility Study

Our second special case estimate of the feasibility
of the proposed signal detection method considers multimode
fields. 1In this second special case we once again assume
relatively large number of received photons (<n> = 100) in
the sampling interval T.

The number of modes m associated with the optical
field can be computed from the configuration depicted in

Fig. 6. It has been shown above that m is given by

SSl Av

m =
2,2
R™A Bd

We assume the following reasonable values for the parameters

of the expressions for m:

Sl = 0.1 m2
S = 10“4 m2
R = 1 Km
A = 1 uym

av = 10710

g, = 108
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Substituting these numerical values into the equation

for n yields:

